Multiple testing / Multiple comparison

Glantz, Primer of Biostatistics, Chapter 4

The multiple comparison problem

Suppose that we perform 5 t-tests, each with alpha = 0.05. 

What is the probability that we will get at least one false positive result?

P(at least one false positive result) 
= 1 - P(zero false positive results)

The probability of getting a false positive result for a single test is alpha = 0.05.

So the probability of not getting a false positive result for a single test is 
1 – alpha = 1 - 0.05 = 0.95. 

If we do k = 5 t-tests, the probability of getting no false positives on any test is 0.95^k = 0.95^5 

P(at least one false positive result) 
= 1 - P(zero false positive results)

= 1 – (1 - .05) ^ k

= 1 – (1 - .05) ^ 5

= 1 – (.95) ^ 5

= 0.226
If we do 10 t-tests with alpha = 0.05, then
P(at least one false positive result)  

= 1 – (.95) ^ 10

= 0.40

If we do 20 t-tests with alpha = 0.05, then
P(at least one false positive result) = 

= 1 – (.95) ^ 20

= 0.64

What if we do 100 t-tests with alpha = 0.05, for 100 genes? 

Then P(at least one false positive result)  

= 1 – (.95) ^ 100

= 0.994

Recall that many gene expression studies use microarrays with 10,000 genes.
In genotyping studies, we may examine the association of 500,000 SNP’s with a disease outcome.

In such studies, the probability of at least one false positive result is near certain.

We will often be interested not just in the probability of one error, but in the expected total number of errors. The expected number of false positives is simply alpha multiplied by the number of tests:

For k=100 independent t-tests with alpha = 0.1, the expected number of false positives is

100 * 0.10 = 10 false positives.

Family-wise error rate

The probability that we will get at least one false positive result, P(at least one false positive result), is called the Family-wise error rate (FWER).
Protecting against false positive results

Many statistical methods have been developed to protect against making a false positive conclusion. We’ll examine the Bonferroni correction and Holm’s test. These and others are described in Glantz.

Bonferroni correction

Divide the target alpha (typically alpha(T)=0.05 or 0.01) by the number of tests being performed. 

If the unadjusted p-value is less than the Bonferroni-corrected target alpha, then reject the null hypothesis.
If the unadjusted p-value is greater than the Bonferroni-corrected target alpha, then do not reject the null hypothesis.

Example of Bonferroni correction.

Suppose we have k = 3 t-tests. 

Assume target alpha(T)= 0.05.

Bonferroni corrected p-value is alpha(T)/k = 0.05/3 = 0.0167

Unadjusted p-values are 

p1 = 0.001

p2 = 0.013

p3 = 0.074

p1 = 0.001 < 0.0167, so reject null

p2 = 0.013 < 0.0167, so reject null

p3 = 0.074 > 0.0167, so do not reject null

Bonferroni adjusted p-values.

An alternative, equivalent way to implement the Bonferroni correction is to multiply the unadjusted p-value by the number of hypotheses tested, k, up to a maximum Bonferroni adjusted p-value of 1. If the Bonferroni adjusted p-value is still less than the original alpha (say, 0.05), then reject the null.
Unadjusted p-values are 

p1 = 0.001

p2 = 0.013

p3 = 0.074

Bonferroni adjusted p-values are 

p1 = 0.001 * 3 = 0.003

p2 = 0.013 * 3 = 0.039
p3 = 0.074 * 3 = 0.222
The multiple comparison correction methods can provide adjusted p-values, though in general calculation of the adjusted p-value is more complicated than is the case for Bonferroni.
Holm’s test

For the Bonferroni correction, we apply the same critical value (alpha/k) to all the hypotheses simultaneously. It is called a “single-step” method.

Holm’s test is a stepwise method, also called a sequential rejection method, because it examines each hypothesis in an ordered sequence, and the decision to accept or reject the null depends on the results of the previous hypothesis tests.

The Holm’s test is less conservative than the Bonferroni correction, and is therefore more powerful. The Holm’s test uses a stepwise procedure to examine the ordered set of null hypotheses, beginning with the smallest P value, and continuing until it fails to reject a null hypothesis.
Example of Holm’s test.

Suppose we have k = 3 t-tests. 

Assume target alpha(T)= 0.05.

Unadjusted p-values are 

p1 = 0.001

p2 = 0.013

p3 = 0.074

For the jth test, calculate alpha(j) = alpha(T)/(k – j +1)

For test j = 1, 

alpha(j) = alpha(T)/(k – j +1)

= 0.05/(3 – 1 + 1) 

= 0.05 / 3

= 0.0167

For test j=1, the observed p1 = 0.001 is less than alpha(j) = 0.0167, so we reject the null hypothesis.

For test j = 2, 

alpha(j) = alpha(T)/(k – j +1)

= 0.05/(3 – 2 + 1) 

= 0.05 / 2

= 0.025

For test j=2, the observed p2 = 0.013 is less than alpha(j) = 0.025, so we reject the null hypothesis.

For test j = 3, 

alpha(j) = alpha(T)/(k – j +1)

= 0.05/(3 – 3 + 1) 

= 0.05 / 1

= 0.05

For test j=3, the observed p2 = 0.074 is greater than alpha(j) = 0.05, so we do not reject the null hypothesis.

Recall that the Family-wise error rate (FWER) is the probability that we will get at least one false positive result, P(at least one false positive result).

The Bonferroni test and Holm’s test protect us against the FWER. 

False discovery rate

FWER controls the probability of at least one false positive result when we do multiple comparisons.

When we do microarray gene expression experiments, or SNP genotyping studies, we usually examine thousands of gene in a screening experiment to identify candidate genes that appear to be associated with the outcome. 

We subsequently perform additional confirmation and validation experiments to filter out the candidates that are false positives from those that are genuinely associated with the outcome. 

In this type of experiment, we are less concerned about protecting against a single false positive. 
Instead, we are interested in estimating the proportion of false positives (error) among the candidate genes that we identify (those genes for which we do not reject the null hypothesis).
The False Discovery Rate (FDR) is the expected proportion of false positives (erroneously rejected null hypotheses) among the rejected null hypotheses.

Define the FDR as follows.

m = the number of simultaneously tested null hypotheses.

m0 = the number of null hypotheses that are true null

For each hypothesis Hi, calculate the corresponding p-value Pi from the test statistic (e.g., t-test).

R = the number of hypotheses rejected

V = the number of true null hypotheses rejected

S = the number of false null hypotheses rejected

R = V + S

Q = V/R when R > 0

Q = 0 otherwise

FDR = E(Q)

Estimating the FDR for a real data set can be quite challenging. Many methods have been developed, it is an active area of research, and there is as yet no agreement on which methods are best.
We’ll look at the Benjamini and Hochberg method, which was one of the first developed and is widely used. Benjamini-Hochberg controls the FDR provided that the true null hypotheses’ p-values are independent uniform(0,1) random variables, which requires in particular that the hypothesis tests are not correlated. Gene expression is often correlated. Simulation studies indicate that Benjamini-Hochberg may be overly conservative (have low power) if many tests are true positive.
Benjamini and Hochberg FDR
Order the p-values P1, … Pm from smallest to largest.
Order the corresponding hypthotheses H1, … Hm.

For a desired FDR q, compare the ordered p-value Pi to the critical value q*i/m.

k = max (i : Pi < q*i/m) 

If k exists, then reject H1, … Hk

See Excel file “multtest examples.xls”.

The multtest R package for multiple testing

Sandrine Dudoit and colleagues implemented the R multtest package, which is part of the Bioconductor package, to perform multiple testing analyses.

See the multtest documentation on the course website.

The document titled “Bioconductor’s multtest package” by Sandrine Dudoit and Yongchao Ge includes a cases study of the ALL/AML leukemia data set of Golub et al, which we’ll examine here.

Golub and colleagues

library(multtest)

data(golub)
The golub data set has three parts:
1. golub 3,051 x 38 matrix of expression level

2. golub.cl  a vector of tumor class labels (0=ALL,1=AML)

3. golub.gnames  3,051 x 3 matrix of gene identifiers 

length(golub)/38
length(golub.cl)

length(golub.gnames)/3
# First 10 rows and 10 columns
golub[1:10,1:10]

golub.cl

golub.gnames[1:10,]
golub.gnames[1000:1010,]
The mt.teststat function

The mt.teststat function calculates a test statistic (for example, the t-statistic or the Wilcoxon) for each row in a data frame.

# Get documentation on mt.teststat

?mt.teststat

# Compute the t-statistic comparing, for each of the first 100 genes, the expression in the ALL cases to the expression in the AML cases.
teststat.t.equalvar= mt.teststat(golub[1:100,], golub.cl, test=“t.equalvar”)

teststat.t.equalvar
# Plot the t-statistics against the normal quantiles.

qqnorm(teststat.t.equalvar)

qqline(teststat.t.equalvar)
# Do the Wilcoxon test

teststat.wilcoxon = mt.teststat(golub[1:100,], golub.cl, test=“wilcoxon”)

teststat.wilcoxon

# Plot the wilcoxon against the normal quantiles.

qqnorm(teststat.wilcoxon)

qqline(teststat.wilcoxon)
Are the Wilcoxon results similar to those for the t-test?

The mt.raw2adjp function

The mt.raw2ajdp function computes adjusted p-values for each raw-pvalue. We’ll only look at the Bonferroni, Holm, and Benjamini-Hochberg adjusted p-values.
# Calculate the unadjusted p-value corresponding to each t-statistic in the list teststat.t.equalvar.

rawp0 = 2*(1 - pnorm(abs(teststat.t.equalvar)))

rawp0
plot(sort(rawp0))

# Calculate the adjusted p-values using the Bonferroni, Holm, and Benjamini-Hochberg methods

procs = c("Bonferroni", "Holm", "BH")

res = mt.rawp2adjp(rawp0, procs)

adjp = res$adjp[order(res$index),]

round(adjp,3)
The mt.reject function

The mt.reject function returns the number of rejected hypotheses corresponding to each adjusted p-value for the multiple testing correction procedures you specify. 

Let’s look at the number of rejected null hypotheses at successive p-values from alpha = 0.05 to alpha=1, using the Bonferroni, Holm, and Benjamini-Hochberg procedures.

The number of rejected hypotheses for each adjusted p-value for the Bonferroni, Holm, and Benjamini-Hochberg procedures is given by this code.

mt.reject(adjp, seq(0,1, 0.05))$r
Table 1. Number of rejected null hypotheses

	alpha
	rawp
	Bonferroni
	Holm
	BH

	0.00
	0
	0
	0
	0

	0.05
	31
	12
	12
	18

	0.10
	36
	12
	12
	22

	0.15
	43
	12
	12
	30

	0.20
	48
	12
	12
	32

	0.25
	54
	13
	13
	33

	0.30
	57
	14
	14
	38

	0.35
	57
	14
	15
	44

	0.40
	62
	15
	16
	46

	0.45
	64
	16
	16
	49

	0.50
	67
	16
	16
	57


For alpha = 0.05 

raw p-value rejects 31 null hypotheses.

Bonferroni and Holm reject 12 null hypotheses.

Benjamin-Hochberg rejects 18 null hypotheses. 

For alpha = 0.2 

raw p-value rejects 48 null hypotheses.

Bonferroni and Holm reject 12 null hypotheses.

Benjamin-Hochberg rejects 32 null hypotheses. 

So the raw p-value is least conservative, Bonferroni and Holm give the same (most conservative) result in this case, and Benjamin-Hochberg is in between.

How do we know which estimate is correct?

The best way to be confident in the results is to replicate the experiment in one or more additional samples. 
Keep in mind that the p-values are a function of power and sample size, and that even a true effect may not be reproduced in additional samples if the power and sample size are small.

